
AD-A268 235T A0USAISEC ,,,lmll,,,
US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES

AG121993u

The Software Support

Qualitative Assessment Methodology

Volume II

The Review of Metrics for
Developing an Information Systems
Support Measurement Framework

93-18408

1 March 1991
ASQB-GI-91-017

\ _

AIRMICS
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

., -|

UNCLASSIFIED

tTForm ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-o,138, , , g1 UP. Dote: J.n. , 'S

Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTI MARKINGS

UNCLASSIFIED NONF
to. SECUR'ITY CLASSIFICATION AUTHORIT? 3. DISTRIBUTION / AVAILABILITY OF REPORT

N/A
2b. DECLASSIFICATION / DOUWNGRADING SCHEDULE N/A

N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ASQB-GI-91-017 N/A

6a. NAME OF PERFORMING ORGOANtZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
The Center for Information (if applicable) N/AS.... h , /

6c. ADDRESSr City, State, and ZIP Code) 7b. ADDRESS (City, State, and Zip Code)
SERC Dept of MIS
Georgia Institute of Technology University of Arizona N/A
Atlanta_ QA 30131, Tucson. AZ 85613

8a. NAME OF PUNDINO/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

AIRMICS I ASQB - GI
8c. ADDRESS (City, State. and ZIP Code) tn elt' n mr wt"; autR,0

115 O'Keefe Bldg., PROGRAM PROJECT TASK WORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.

Atlanta. GA 30332-0800 62783A I DYI0 02-01-01 1
11. TITLE (•Include Security cla•-ificaion) The Software Support Qualitative Assessment Methodology Volume II

The Review of Metrics for Developing an Information Systems Support Measurement
(UNCLASSIFIED) Framework

12. PERSONAL AUTHOR(S)

W. Michael McCracken, Elizabeth Mynatt, Christopher Smith (GIT)
J.F. Nunamaker, Ai-Mei Chang, Titus Purdin, Richard Orwig, Amit Vyas (Univ of Arizona)

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month. Day) 15. PAGE COUNT

final report FROM TO 1991, March, 22 23

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
life cycle metrics; systems support; support measures; qualitative asses-

FIELD GROUP SUB-OROUP sment; supportability measures; assessment measures; readiness measures;

_J information systems; software maintenance; support tools; tools manage-
ment;

19. ABSTRACT (Continue on reverse if necessary and identity by block number)

The Software Supportability Qualitative Assessment Methodology is a five volume reference set that provides mea-
sures to aid in the support of information systems. The volumes are aimed at improving the support process by
more accurately assessing the capabilities of support organizations, qualitatively measuring the supportability of fielded
systems and evaluating the operational readiness of fielded systems. The five volumes are:

I. Developing Quality Measures for Information Systems Support
II. The Review of Metrics for Developing an Information Systems Support Measurement Framework
III. Implementing the Software Supportability Measure
IV. Implementing the Support Organization Assessment Measure
V. Implementing the Operational Readiness Measure

This volume provides a survey and evaluation of current metrics in terms of information sustems support. Specifi-
cally, three classes of metrics are reviewed: software product metrics, life cycle process metrics , and process man-
agement metrics.

20 DISTRIInUTIoN / AVAILBILITY OF ABSTRACT 21. ABSTRACT SECURrrY CLASSIFICATION

0 UNCLASSIFIEID / UNLIMITED [] SAME AS RPT. [DT1C USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I 22c OFFICE SYMBOL

Howard C "Butch" Higley I404) 891 3110 ASQB-GI
A.0 A ORM 1473, 94 MAR 93 APR edition may be used until exhausted SI-CtmsfY ClIElICATIpr. OF TIS PACE

All other editionm are obsolete UNCLASSIFIED

The research herein was performed for the Army Institute for Research in Management
Information, Communications, and Computer Sciences (AIRMICS), the RDTE organization
of the U.S. Army Information Systems Engineering Command (USAISEC). The sponsor for
the project was the Office of the Director of Information Systems for Command, Control,
Communications, and Computers (ODISC4). The principal investigator was from The Cen-
ter for Information Management Research (CIMR), W. Michael McCracken of the Georgia
Institute of Technology.

This research report is not to be construed as an official Army position, unless so
designated by other authorized documents. Material included herein is approved for public
release, distribution unlimited, and is not protected by copyright laws. Your comments on
all aspects of the document are solicited.

Aocession For
XTIS GRA&H [•

DTIC TAB 0
Unanno-4nced 5

By
Distribution/
Availability Codes

hflvai and/or

Dist j Special

DTIC Q17AL-My 3

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

s/ s/
Glenn E. Racine John R. Mitchell
Chief Director
CISD AIRMICS

The Software Support

Qualitative Assessment Methodology

Volume I1

The Review of Metrics for Developing an Information

Systems Support Measurement Framework

Prepared by

The Center for Information Management Research

for the

U.S. Army Institute for Research in Management

Information, Communications, and Computer Science

(AIRMICS)

Contract No. ECD-8904815

W. Michael McCracken, Elizabeth Mynatt, Christopher Smith

Software Engineering Research Center

Georgia Institute of Technology

December 1990

I I

The Software Supportability Qualitative Assessment Methodology is a five
volume reference set that provides measures to aid in the support of information systems.
These manuals are aimed at improving the support process by more accurately assessing the
capabilities of support organizations, quantitatively measuring the supportability of fielded
systems and evaluating the operational readiness of fielded systems.

Volume I, Developing Quality Measures for Information Systems Support, describes the
three measures along with the model of information system support that the measures are
designed to satisfy. This is the main volume of the set and should be consulted before
implementing the measures described in more detail in the other volumes.

Volume II, The Review of Metrics for Developing an Information Systems Support Mea-
surement Framework, provides a survey and evaluation of current metrics in terms of in-
formation systems support. Specifically, three classes of metrics are reviewed: software
product metrics, life cycle process metrics, and process management metrics.

Volume III, Implementing the Software Supportability Measure, provides instructions for
collecting data for the measure, compiling the measure by evaluating the data, and inter-
preting the final result. The volume also contains guidelines for improving the supportabilty
of an information system based on its evaluation. Specifically, the volume contains resource
estimations for compiling and evaluating the measure, questionnaires for collecting the re-
quired data and step-by-step instructions for measuring the supportability of an information
system.

Volume IV, Implementing the Support Organization Assessment Measure, provides in-
structions for collecting data for the assessment, conducting the assessment, and interpret-
ing the final result. The volume also contains guidelines for improving the capabilities of
a support organization based on its evaluation. Specifically, the volume contains resource
estimations for conducting and evaluating the assessment, questionnaires for collecting the
required data and step-by-step instructions for measuring the capabilities of a support or-
ganization.

Volume V, Implementing the Operational Readiness Measure, provides instructions for
collecting data for the measure, compiling the measure by evaluating the data, and inter-
preting the final result. The volume also contains guidelines for improving the operational
readiness of an information system based on its evaluation. Specifically, the volume contains
resource estimations for compiling and evaluating the measure, questionnaires for collecting
the required data and step-by-step instructions for measuring the operational readiness of
an information system.

The Review of Metrics for Developing an Information Systems
Support Measurement Framework

Chritopher Smith
Elizabeth Mynatt

Center for Information Management Research

Georgia Institute of Technology
Atlanta, GA 30332-0280

1. Introduction

A major contributor to the life cycle cost of information systems is the cost of supporting

these systems once they are fielded. The support of existing information systems has histori-
cally been perceived as a less glamorous task than the development of new information systems.
However, it has been estimated that support costs now consume greater than 70 percent of total
life cycle cost and that this proportion is still rising (24].

Unfortunately, while support cost has become an increasingly acute problem, there is not
yet an effective means for determining support cost drivers and reducing support cost. Not only
is the support process still poorly understood, there is no comprehensive set of quality measures
that may be utilized to understand and control the process. Determining appropriate quality

measures is no simple task, given the increasing size and complexity of information systems,
the potentially large number of staff supporting these systems, the intricacy of information sys-

tems support planning, and the diversity of information systems users. The information systems

support organization must have a method for evaluating their capability to adequately support
their collection of information systems. In addition, measures of the supportability of informa-
tion systems and the availability of these systems to the users is needed.

The objective of the Software Support Qualitative Assessment Methodology (contract no.
ECD-8904815) is the development of a framework of measures for information systems support
for utilization by the U. S. Army information systems support organizations. It is likely that a
framework of measures for information systems support can be developed based on previously

proposed life cycle measures. The key to developing this measurement framework is: (1) under-
standing the availability of current met cs; (2) constructing a valid model of the information

systems support process; and (3) developing the measurement framework around the proposed
model.

-2-

In this paper, we review some of the most important metrics that may be applied to the
information systems support cycle, dividing the metrics into three broad classes. We then out-
line an information systems support model and describe top-level measures based on this model
which are built from the reviewed metrics.

2. Classes of Measures for Information Systems Support

A metric is a measurable indication of some quantitative aspect of a system [10]. We use
metrics to establish an indicator of merit for accurately evaluating software and its development
and support. Metrics are also used to control and predict the quality of software and the process
of developing and supporting this software. Metrics may be thought of as falling into one of
three classes. One class of metrics quantifies attributes of the software product via static
analysis of the software's source code and accompanying internal and external documentation
Examples of attributes in this class are complexity and modularity. Another class of metrics
quantifies aspects of the software development and support process. Still another class of
metrics assesses the behavior or functionality of the software based upon its execution (e.g., a
reliability metric).

These three classes of metrics can provide useful information to the various people
involved in the information systems support process. The software technician is most inteisted
in producing high-quality software and thus may find the static measures of product quality use-
ful. The information systems support administrator interested in improving the support process
may find the support process measures most useful. The user of the information systems is
most interested in issues such as the usability, reliability, and availability of the information sys-
tems, thus suggesting the usefulness of behavioral metrics.

In the following three sections, a review of the three classes of metrics for information
systems support is given. This review serves as foundation upon which we can subsequently
build a framework of information systems support measures.

3. Software Product Metrics

Software product metrics measure characteristics exhibited by a static software product
(source code, documentation). The metrics provide a method of measuring product quality.
Although the product is a reflection of the process that created it, the metrics do not provide
enough information to accurately analyze the process. Software product metrics are of particu-
lar importance to those most closely associated with the development and support of the pro-
duct.

-3-

The characteristics of the software product which affect the ability to support the product
are those determining the maintainability of the product. Maintainability is formally defined as
follows:

Maintainability is the ability of an item, under specified conditions of use, to be retained
in, or restored to, within a given period of time, a specified state in which it can perform
its required functions, when maintenance is performed under stated conditions and while
using prescribed procedures and resources [9].

Modification of software is a non-trivial task. It involves such activities as program
comprehension, diagnosis, repair or enhancement, and testing. Many software product design
considerations affect the ease of software modification. These attributes are defined in the fol-
lowing table.

Complexity A characteristic of the software interface
which influences the resources another
system will expend or commit while
interfacing with the software [8].

Consistency The extent to which uniform design

techniques and notation are used [251.

Modularity Characteristics which provide
well-structured, highly cohesive,
minimally coupled software [25].

Self-Descriptiveness Characteristics which provide an

explanation of the implementation of
functions [25].

Testability The extent to which software facilitates

both the establishment of test criteria
and the evaluation of the software with
respect to those criteria [1].

Table 1: Software Design Factors Influencing Maintainability

Other aspects of the software product can affect its maintainability. Examples include the
implementation language(s) and the size of the product. Another important factor in predicting
the ability to perform corrective maintenance tasks on a software product is the age of the
software, or, more directly, the extent to which the software has been previously modified. A
recent study found that 83% of software faults were a result of modifications performed on an
already fielded product [7], suggesting the crucial role post-release modification plays in the
support of software.

-4-

To summariz, the set of factors that appear to most likely influence software maintalna-
bility is as follows:

Complexity Size
Consistency Programming Language
Modularity Age
Self-Descriptiveness Modifications
Testability

Table 2 lists possible objective metrics that may be used to measure the attributes of
software product maintainability. Not all attributes are listed in the table. Namely, metrics for
consistency and self-descriptiveness, two attributes for which objective measurements are diffi-
cult to obtain, are not presented. In these two cases (and perhaps others where it may be diffi-
cult to gather objective measures), one would need to develop an additional set of subjective
metrics to measure the attributes. For instance, we may measure the self-descriptiveness attri-
bute by noting the existence and adequacy of certain types of documentation and the adherence
of documentation to existing standards.

-5-

Anribute Metric

Complexity Cyclomatic Complexity [V(O)] [19]

Effort Metric [14]
Information Flow [171
Logical Stability [27]
Nesting Level [8]

Reachability [23]
Logical Complexity [12]

Span Between Data References [15]

Modularity Cohesion Metric [(I I

Average Module Size

Testability Reachability [23]

Cohesion Metric [1]

Size Lines of Code (LOC)
Machine Lang. Instructions [22]

Number of Tokens [14]

Source Code Storage Space
Object Code Storage Space

Program Volume (V) [14]
Module Count
Average Module Size
Procedure Count [5]

Language Language Level [14]

Age Program Age [5]

Number of Program Releases [51

Modifications Total Number of Modifications
Rate of Modificaitc-.s

Table 2. Examples of Software Product Maintainability Metrics

From the examples presented in the Table 2, it is clear that there is a wide assortment of metrics
from which to choose to measure software maintainability.

- -

-6-

4. Life Cycle Process Metrics

Life cycle process metrics measure attributes of the process employed by an information
systems organization to develop and support software. Since the software engineering process
cannot be measured directly, we measure the elements directly contributing to the execution of
the process. In other words, we measure the process environment. The setting of the process
environment is the information systems support organization. Thus, life cycle process metrics
usually measure some attribute of the development or support organization. In section 5 we dis-
cuss process metrics not directly measuring organizational attributes.

The ability to successfully execute the software engineering process depends on two key
factors: the ability to successfully manage the process and the ability of resources to facilitate

the successful execution of the process. The life cycle process metrics thus fall into one of the
two broad categories of process management metrics and resource metrics.

4.1. Process Management Metrics

Process management metrics are the least well-defined of all software life cycle metrics.

There are few, if any, concrete, objective management measures. As a result, most management

measures are subjective, and their value or contribution to a high-level measure is difficult to

accurately assess. A list of process management elements [21] are as follows:

" Project Management

- Organizational Structure

- Ufe Cycle Planning

- Design Methods

- Implementation Methods

Testing Strategy

Project Interfaces

"• Configuration Mangement

Identification

Control

Audlit/Review

A complete evaluation of the effectiveness a process management element involves the

measurement of three characteristics of the element. These characteristics are exisnce, usage,

and adequacy. The existence characteristic describes the presence or absence of an element of

-7-

process management believed to play a key contribution to the execution of the software pro-
cess. The usage characteristic describes the degree of utilization of an existing process manage-
ment element. The adequacy characteristic describes the effectiveness of the particular procs
management element that exists and is used.

Metrics ior !;;easuring process management characteristics are not as easily derivable as
product meacs,, :intchere is no tangible product to measure. The existence characteristic can
be expressed % a binary measure, indicating whether a certain element exists or does not exist.
The usage characteristic may be expressed In terms of a binary measure (used or not used), or it
may be expressed in terms of the degree of an element's utilization, if such infbrmation Is
obtainable (via use of a rank scale or a utilization percentage). Adequacy is difficult to measure
because it is completely subjective. One method of consistently measuring adequacy of an ele-
ment is the employment of a rank scale (for instance, an integer scale of 0 to 5, where 0 = com-
pletely inadequate and 5 = completely adequate). An example of the use of such a scale is
found in [201.

4.2. Resource Metrics

Resource metrics measure the capability of resources in helping to fulfill a support
organization's ability to support its systems. The collection of resources is represented in the
two-dimensional matrix shown in table 3. The top row of terms in this table denotes the vari-
ous classes of resources, while the left hand column denotes characteristics we are interested in
measuring. Thus, we have nine measures of interest: personnel availability, personnel utiliza-
tion, and so forth.

Personnel Software Hardware

Availability

Utilization

Capability

Table 3: Resource Matrix

In constructing a complete set of resource measurements, if one wishes to utilize objective
metrics to the maximal extent possible, then the best one may hope for is a mix of objective and
subjective measurt s. Table 4 shows that, for some resource classes (in particular, anything
involving personnel), many objective metrics have been proposed. On the other hand, metrics
for many of the classes involving hardware or software are much harder to construct. Such
metrics are dependent upon requirements and are likely to be at least in part subjective. In such
cases, we once again would want to use the existence, usage and adequacy characteristics to
obtain omplete measures.

-8-

Characteristic Metric

Hardware Utilization CPU Utilization [22]

I/O Channel Utilization [22]
Memory Utilization [221
Test Resource Allocation [16]

Hardware Capability Computer Storage Capacity

Personnel Availability Number of Project Personnel [3]

Number of Support Organization Personnel

Personnel Utilization Staff-Hours [3]
Percentage Staff Allocation for Task [22]

Personnel Capability LOC/Production Period [22]
Function Points [4]
Education Level 13]
Soft. Eng. Experience [3]
Soft. Tech. Experience [3]
Expert Availability [3]
Organization Experience [3]

Training [3]
Project Experience [22]
Productivity Quotient [26]
Programmer Efficiency [261

Software Utilization Amount (time) Software Usage
Frequency of Usage

Table 4: Examples of Resource Metrics

5. Behavioral Metrics

There is another class of metrics measuring attributes of the software product that may be
analyzed only after the software has been dynamically executed. An example of such an attri-
bute is software reliability. It is Inappropriate to classify such metrics with the other life cycle
process metrics because they are at best Indirect measures of the software development and sup-
port process. Essentially these metrics measure the overall effectiveness of the software
engineering process without actually measuring the process itself [13]. Table 5 lists the attri-
butes which behavioral metrics measure. These attributes are adapted from [9,25], and [13].

-9-

Usability The effort required to use software relative

w the effort required to implement the
software [25].

Reliability The probability that software will not cause
the failure of a system for a specified time
under specified conditions [I].

Performance A measure of the ability of a computer system
to perform its functions [1].

Integrity The extent to which software will perform
without unauthorized access to code or data [251.

Availability The probability that software will be able

to perform its designated system function
when required for use [1].

Some of the above attributes (reliability, in particular) have been studied in detail, and
specific metrics have been proposed for these attributes. Others, such as usability, have not
been as closely studied and are not as well specified. The difference between the two types of
attributes appears to depend upon whether they are primarily objective or subjective measures.
At one end of the spectrum, there are many objective metrics which may be applied to measure
system reliability or availability. On the other hand, the usability of a system depends as much
on human factors as on specified requirements (the usability metrics shown in table 6 are at best
indirect measures of usability).

-10-

Attribute Metric

Usability Amount of User Training
Frequency of Communication with Users
Percentage of False Maintenance Requests

Reliability Mean Time to Failure (M7TF) [2].
Failure Rate [2].
Fault Density [2].
Defect Density [2].
Estimated Number of Remaining Faults [2].
Testing Sufficiency [2].
Number of Maintenance Requests for Corrections
Rate of Maintenance Requests for Corrections

Performance Resource Consumption [13]
Throughput [13]
Response Time [13]

Integrity System Access Control [6]
System Access Identification [6]

Availability Mean Time Between Failures [9]
Mean Time to Repair [9]
Total System Operational ("Up") Time [9]
Total Time to Complete Maintenance Actions [9].

Table 6: Examples of Behavioral Process Metric:

6. Top-Level Measures of Information Systems Support

From the examples in the above sections it is apparent that there is a myriad of software
engineering metrics from which one can choose. While a few metrics appear to have become
more popular than the other metrics (for instance, certain metrics to measure the size and com-
plexity of computer programs), there is no agreement upon which metrics truly provide the most
accurate and important measures [28]. Additionally, the contribution of identifiable attributes to
top-level measures such as software maintainability and supportability remains unclear. Empirl-
cal studies have thus far not resolved these issues. At any rate, the value of a particular metric
is dependent upon the environment in which it is measured and the person(s) interpreting the
resultant measure.

In our particular case, we would like to determine the appropriate metrics to incorporate
into a framework for the assessment of information systems support. Before we can do so, we
must develop a valid information systems support model around which we can center our meas-
ures.

6.1. Information Systems Support Model

The ability to support a software system involves a complex combination of factors,
including product attributes, process attributes, and reliability attributes. The ability to develop
and implement a support assessment methodology depends on the ability to successfully sort out
the seemingly chaotic combination of support factors. We must also determine the perspectives
for which we should base a high-level support measures.

Lientz and Swanson 118] identified three distinct populations in the information systems
support environment:

"* Information Systems Support Organization

"* Information Systems

"* Information Systems Users

A single high-level support measure may not accommodate all perspectives. The support
organization is most likely concerned primarily with its ability to support its portfolio of
software systems, suggesting the need for a organizational assessment measure. System users
are more concerned with the availability or "operational readiness" of a software system, while
the technical support staff maintaining a certain software product are particularly concerned with
the supportability of that product. While each of the possible measures is influenced to a certain
degree by various software product and process attributes, the impact of particular factors on
these measures will vary.

A model of information systems support is shown in Figure 1. This model is an adapta-
tion of the model presented in [241. The model depicts the three distinct entities, or perspec-
fives, within the information systems support environment. Depending upon one's perspective,
the view of information systems support and its problems will differ. The lines connecting the
entities in the model illustrate the relationships shared by the entities.

Two observations we may draw from the model to aid us in constructing support measures
are:

" The view of information systems support varies depending upon one's perspective.
Thus, certain top-level measures may be more valuable, and a certain set of low-level
metrics may contribute significantly to the measures.

" Because there are relationships between the information systems, support organization,
and collection of users, there will be at least a small degree of commonality among all
top-level measures, even If such measures are interpreted differently.

-12-

In our model, we associate a top-level measure with each of the three perspectives. The
three top-level measures are supportability, support organization assessment, and opera-

tional readiness. We define and discuss the motivations for the use of such terms in the fol-
lowing section.

*s~ss... Supportability

hiforMation
Syistm

Support \ / \ i Operational

Organization Readiness

Assessment

//
/1 \

Fgure 1: Support Model

6.2. Top-Level Support Measures

We have proposed three top-level information systems support measures to describe the

information systems support environment while accommodating each of the support perSpec-

tives. From the information system's point of view, this measure is supportability. Supporta-

bility is the measure of the adequacy of products, resources, and procedures to facilitate:

"* The intended operation of a software system or the restoration of the system to its
intended operational state.

"* The modification of the software system to meet new requirements.

-13-

For each information system supported, the supportability measure is intended to answer the
questions, "Is the information system maintainable?", and, "Are the resources and procedures
used to support the information system adequate?"

From the support organization's point of view, the measure we propose is the support
organization assessment A support organization assessment is an assessment, conducted
either by the support organization or an outside agent, of the organization's ability to effectively
support its information systems portfolio. The support organization assessment answers the
question, "Can the support organization adequately keep its collection of information systems up
and running?" Note that with this measure we treat information systems collectively rather than
individually.

For the information system user's viewpoint, we propose operational readiness. Opera-
tional readiness is the ability of a software system to perform Its intended function upon
request, based on:

"* The current operational state of the system.

"* The reliability of the system.

"* The supportability of the system.

Operational readiness addresses such questions as "Is the system up and running when I need
it?", and, "When I use the system, can I expect correct results?" With operational readiness, we
are again addressing information systems on an individual basis. In additionn, supportability
(one of our other proposed measures) contributes to operational readiness, but user-oriented pro-
cess measures also contribute to the top-level measure.

In previous sections we reviewed three classes of metrics for information systems support:
product metrics, software engineering process metrics, and user-oriented process metrics. For
each of our three top-level support measures, one class of metrics takes on primary importance.
For the supportability measure, the maintainability product metrics are of primary importance,
while the process metrics play a lesser role. The support organization is based heavily on sup-
port organization process metrics. The operational readiness measure is derived from the
usage-oriented process metrics, although the other sets of metrics contribute to the measure as
well.

6.3. Building the Top-Level Measures

The approach we take to develop the top-level support measures is a compromise between
the incorporating extensive low-level metrics that would need to be collected to provide a com-
plete albeit complex measure and the specification of only one or two metrics that supposedly
would provide sufficient measurement of the entire support environment. On the one hand, the
collection of a vast amount of metrics would be cumbersome and impractical (and probably
unnecessary). On the other hand, it is unlikely that a single metric, such as a program complex-
ity metric, wholly predicts the supportability of an information system.

- 14-

We specify the composition of top-level measures in accompanying documents. The

measures are developed using a combination of subjective and objective metrics, the objective

metrics being partly drawn from the metrics outlined in the above sections. The rationale for

selecting a particular metric to comprise a measure is based on the capability to gather the

metric across a variety of information systems support environments and the predictive value of

the metric in those environments.

7. Conclusion

In this paper, we reviewed existing metrics for measuring information systems support.

We first divided the metrics into three classes. These classes of metrics serve as a basis from

which we may develop a set of top-level support measures. Three top-level measures are pro-

posed which accommodate the various perspectives in the information systems support environ-

ment modeled in Section 6. We may construct these measures by using a combination of objec-

tive and subjective metrics from each of the three metrics classes. In addition, the construction

of the three top-level measures require differing interpretations of the role each class of metrics

plays in the construction process. The combination of these top-level measures provide a com-

plete view of the support environment and separately provide valuable information to the vari-

ous support audiences. The development of these support measures is a necessary step in the

understanding and control of the infbormation systems support process. This ability to under-

stand and control the process, in turn, leads to the greater ability to reduce information systems

support costs and provide sustained support for information systems in the face of constantly

changing user requirements.

| I I

- 15-

8. Bibliography

1. IEEE Standard Glossary of Software Engineering Terminology, IEEE, New York (1983).
Standard 729-1983

2. IEEE Standard Dictionary of Measures to Produce Reliable Software, IEEE, New York
(1989). Standard 982.1-1988

3. Standard for Software Productivity Metrics, IEEE, New York (March 1990). Draft
P1045/D2.1

4. C. A. Behrens, "Measuring the Productivity of Computer Systems Development Activi-
des," IEEE Transactions on Software Engineering SE-9, pp. 648-652 (November 1983).

5. G. Benyon-Tinker, "Complexity Measures in an Evolving Large System," Proceedings
of the Workihop on Quantitative Software Models, pp. 117-127, IEEE (October 1979).

6. T. P. Bowen, G. B. Wigle, and J. T. Tsal, "Specification of Software Quality Attributes:
Software Quality Evaluation Handbook," RADC-TR-85-37, vols. I-Il, Rome Air
Development Center (February 1985).

7. J. S. Collofello and J. J. Buck, "Software Quality Assurance for Maintenance," IEEE
Software, pp. 46-51 (September 1987).

8. S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering Metrics and Models,
Benjamin/Cummings, Menlo Park, CA (1986).

9. U. S. Department of Defense, "Test and Evaluation of System Reliability, Availability,
and Maintainability: A Primer," DoD Directive 3235.1-H (March 1982).

10. T. DeMarco, Controlling Software Projects, Yourdon, New York (1982).

11. T. J. Emerson, "Program Testing, Path Coverage, and the Cohesion Metric," Proceed-
ings COMPSAC 84, pp. 421-431, IEEE (1984).

12. T. Gilb, Software Metrics, Winthrop Publishers, Cambridge, MA (1977).

13. R. Guilfoyle, "Effectiveness Measures of the Software Process," Proceedings of the
Eighth Annual Conference on Ada Technology, pp. 537-545 (March 1990).

14. M. H. Halstead, Elements of Software Science, Elsevier North-Holland, New York (1977).

15. W. Harrison, K. Magel, R. Kluczny, and A. DeKock, "Applying Software Complexity
Metrics to Program Maintenance," IEEE Computer (September 1982).

16. W. Harrison, "Using Metrics to Allocate Testing Resources in a Resource Constrained
Environment," TR 90-5, Portland State University (April 1990).

17. S. Henry and D. Kafura, "Software Structure Metrics Based on Information Flow," IEEE

-16-

Transactions on Software Engineering SE-7, pp. 510-518 (1981).

18. B. P. Lientz and E. B. Swanson, Software Maintenance Management, Addison-Wesley
(1980).

19. T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software Engineering

SE-2, pp. 308-320 (December 1976).

20. D. E. Peercy and W. F. Huebner, "Risk Assessment Methodology for Software Supporta-
bility (RAMSS): Guidelines for Adapting Software Supportability Evaluations,"
BDM/ABQ-86-0090-TR, The BDM Corporation (April 1986).

21. D. E. Peercy, E. Tomlin, and G. Horlbeck, "Assessing Software Supportability Risk: A
Minitutorial," Proceedings - Conference on Software Maintenance, pp. 72-80, IEEE
(1987).

22. T. F. Saunders, "Software Reporting Metrics," MTR 9650, MITRE Software Center
(April 1985).

23. N. F. Schneidewind and H.-M. Hoffman, "An Experiment in Software Error Data Collec-
tion and Analysis," IEEE Transactions on Software Engineering SE-5, pp. 276-285 (May
1979).

24. E. B. Swanson and C. M. Beath, Maintaining Ilformation Systems in Organizations, New
York, John Wiley and Sons (1989).

25. J. L. Warthman, "Software Quality Measurement Demonstration Project (1)," RADC-
TR-87-247, Rome Air Development Center (December 1987).

26. D. Workman. "A Software Engineering Metric for Programmer Effectiveness," CS-TR-
85-04, University of Central Florida (1985).

27. S. S. Yau and S.-C. Chang, "Estimating Logical Stability in Software Maintenance,"
Proceedings COMPSAC 84, pp. 109-119, IEEE (1984).

28. J. C. Zolnowski and D. B. Simmons, "Taking the Measure of Program Complexity,"
Proceedings of the National Computer Conference, pp. 329-336 (1981).

References

[CDS86] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software Engineering Metrics and
Models. Benjamin/Cummings, Menlo Park, CA, 1986.

(DeM82] T. DeMarco. Controlling Software Projects. Yourdon, New York, 1982.

[Dep82] Department of Defense. Test and Evaluation of System Reliability, Availability,
and Maintainability: a Primer, March 1982. DoD Directive 3235.1-H.

[IEE83] IEEE. IEEE Standard Glossary of Software Engineering Terminology, 1983. Stan-
dard 729-1983.

[PTH87] D. E. Peercy, E. Tomlin, and G. Horlbeck. Assessing software supportability risk:
A minitutorial. In Conference on Software Maintenance, pages 72-80. IEEE, 1987.

[Sch9O] Stephen R. Schach. Software Engineering. Aksen Associates Incorporated Pub-
lishers, Boston, MA, 1990.

[Som89] Ian Sommerville. Software Engineering. Addison-Wesley Publishing Company,
New York, 1989.

[War87] J. L. Warthman. Software quality measurement demonstration project (i). Tech-
nical Report RADC-TR-87-247, Rome Air Development Center, December 1987.

15

